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A Stochastic Model of Oscillating Testosterone Levels in Men
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Abstract

It has been observed that blood testosterone levels in men oscillate with a period of 2
to 3 hours. One simple, deterministic model of a negative feedback loop was proposed to
describe this phenomenon, but it was recently proved that the model has a globally stable
fixed point. Therefore, the deterministic model cannot observe oscillations. We take a
closer look at this model from a different physical basis in which intrinsic fluctuations are
considered. It turns out that sustained oscillations do arise in the continuous-time, discrete-
state stochastic model. This demonstrates how oscillations can occur due to a switching
behavior dependent on the random degradation of testoterone molecules in the system.
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Introduction

• Approximately 90% to 95% of testosterone in men is produced by the testes with

typical blood testosterone levels in the range of 3 to 10 ng/mL.

• These levels have been experimentally observed to oscillate with a period of about 2

to 3 hours.

• An imbalance in testosterone levels can cause dramatic changes (mood, acne, and

weight).

• Parts of the testosterone regulation pathway are associated with many other important

processes in the body such as regulation of growth hormones and endorphins.

• Pharmaceutical interests in chemical castration (Goserelin, Lupron, and Depo-

provera) and the creation of a male pill.

Cartoon of the hypothalamus and pituitary gland. Modified from Campbell (1996).

Plots of experimental data modified from Yen et al. (1999).

Plots of LH experimental data modified from Naftolin et al. (1973).
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The Hormone Secretion Signaling System.

GnRH = Gonadotropin Releasing Hormone

LH = Luteinizing Hormone

T = Testosterone
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The Model

Let R(t)= # of GnRH, L(t)= # of LH, and T(t)= # of T molecules in the system at time t.

Then we propose modeling this system such that

dR
dt

= f (T )−b1R

dL
dt

= g1R−b2L

dT
dt

= g2L−b3T

where

f (T ) =
A

K +T
.

• Goodwin (1964) first proposed this model in a deterministic form to demonstrate os-

cillatory behavior in enzymatic control processes.

• Smith (1980) studied a slight variation of the deterministic model involving a Hill

coefficient in f (T ), and found that oscillations only exist for a physically unrealistic

Hill coefficient of 8 or more.

• Murray (1989) suggested changing the deterministic model to include a time-delay in

the production rate of T .

• Enciso and Sontag (2004) proved that the deterministic model has a globally stable

fixed point (regardless of the length of the time-delay) and therefore does not have a

limit cycle or sustained oscillations.

The fact that the deterministic form of this model does not capture the interesting behavior
of the system under investigation does not mean that this model is useless. Rather, we
find that the interesting behavior can be captured simply by reconsidering this model from
a different physical basis. We do this by taking seriously the fact that events, such as
production and degradation of hormone molecules, occur in an essentially random manner.
As a result, we find that intrinsic fluctuations play a major role when there are low numbers
of molecules present: an important factor since the hormones are typically present in low
concentrations.

To incorporate intrinsic fluctuations, we approach the problem as a continuous-time,

discrete-state Markov process where we are interested in the time-evolution of the chemical

master equation

dP(n, t)
dt

=
6

∑
µ=1

aµ(n− sµ)P(n− sµ, t)−aµ(n)P(n, t).

In this equation, the vector n has entries ni that represent the number of molecules of

species Xi in a well-mixed volume, aµ(n)dt is the probability that reaction µ will occur

in (t, t + dt) given that the system is in state n at time t, and sµ is a stoichiometric vector

defining the result of reaction µ. An exact simulation of the time-evolution of the chemical

master equation is provided by the Gillespie algorithm. This method takes steps in time of

length τ by choosing two random numbers, r1 and r2, from the unit uniform distribution

and calculating the τ and µ for which

τ =
1
a0

ln

(

1
r1

)

µ−1

∑
k=1

ak

a0
< r2 ≤

µ

∑
k=1

ak

a0
.

�
�

�

Results
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Simulation of hormone secretion for parameter values, A = 10−4, K = 10−7, b1 = 0.23, b2 = 0.07, b3 = 0.1, g1 = 0.2618,
and g2 = 0.9015. Average number of molecules are represented by dashed lines; average R is 9.09, average L is 33.92,
and average T is 300.07. Volume is 10pL.
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Two dimensional projections and three dimensional plot of simulation trajectory for the physical parameter values,
A = 10−4, K = 10−7, b1 = 0.23, b2 = 0.07, b3 = 0.1, g1 = 0.2618, and g2 = 0.9015. Average number of molecules are
represented by asterisks.
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Two dimensional projections and three dimensional plot of the deterministic hormone secretion model trajectories using
converted parameter values equivalent to those used in the stochastic simulation.
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Lomb spectral analysis of data from the stochastic simulation. The largest peak corresponds to a frequency of 2.3429×
10−4 Hz, which corresponds to a period of 1.2 hours.
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Peak-to-peak histogram of time intervals for the hormone secretion pathway over a 10 day time period.
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Simulation to illustrate the the switching behavior. Parameter values are A = 10−1, K = 10−4, b1 = 0.23, b2 = 0.032,
b3 = 0.046, g1 = 0.2618, and g2 = 0.9015.
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Conclusions

• By approaching the hormone model from a different physical basis we see how in-

trinsic fluctuations can incite oscillations for low numbers of molecules by way of a

switching behavior.

• Even though the deterministic model has a globally stable fixed point, the stochastic

model was able to capture the pulsatile behavior of the blood hormone levels.

• This approach provides a more realistic representation of the system than its deter-

ministic, mass-action counterpart.

• This simple negative feedback model can be applied to study several different biolog-

ical systems.
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